Bremen

Y

a2 e

<N
--Nq)

Massively Parallel Algorithms
Parallel Sorting
!

G. Zachmann

University of Bremen, Germany
cgvr.cs.uni-bremen.de

eeeeee

W Sorting using Spaghetti in O(1) (?)

= |s O(n) really the lower bound for sorting?
= Consider the following thought experiment:

B. For each number x in the list, cut a spaghetto to Al ’l Ll
length x — list = bundle of spaghetti & unary repr. il "\ f
| |‘;

C. Hold the spaghetti loosely in your hand and
tap them on the kitchen table — takes O(1) !

D. Lower your other hand from above until it meets with a spaghetto —
this one is clearly the longest

E. Remove this spaghetto and insert it into the front of the output list

F. Repeat . . ¢
= If we could use this }T’—HL ‘HH
mechanical computer,
then sorting would be O(1) | ﬂ— | ’__ H
1 | 1 ‘ | —

G. Zachmann Massively Parallel Algorithms SS June 2014 Sorting

eeeeee

Y Difficulties With Parallel Implementation of Standard Sequential Algorithms = "

" Insertion sort:

= Considers only one element at a time
" Quicksort:

= Yes, some parallelism at lower levels of the recursion tree

= But, would need median as a pivot element — hard to find

= Otherwise, random pivot element causes varying sub-array sizes
= Heapsort:

= Only one element at a time

= Heap (= recursive data structure) is difficult on mass.-parallel architecture
= Radix sort:

= Yes, we've seen that already, works well

= But, can handle only fixed-length numbers

G. Zachmann Massively Parallel Algorithms SS June 2014 Sorting 3

Assumptions

= In this chapter, we will always assume that n = 2k

= Elements can have any type, for which there is a comparison
operator

G. Zachmann Massively Parallel Algorithms SS June 2014

Sorting

<n

E-X3)

b

eeeeee

W Sorting Networks

= |[nformal definition of comparator networks:
= Consist of a bundle of "wires"
= Each wire i carries a data element D; (e.qg., float) from left to right

= Two wires can be connected vertically by a comparator

Y

= If Dj >Dj A i<j (i.e., wrong order), 0

then D;and D; are swapped by the

*———o

Y

\4

comparator before they move on

1
2
: 3
along the wires

= Observation: every comparator network is data independent, i.e.,
the arrangement of comparators and the running time are always
the same!

" Goal: find a "small" comparator network that performs sorting
for any input — sorting network

G. Zachmann Massively Parallel Algorithms SS June 2014 Sorting

\4

. VR

4
i’ CcG

Example

Bremen

Y
One stage / step

Sorting

June 2014

Massively Parallel Algorithms SS

G. Zachmann

eeeeee

Y The 0-1 Principle

= Definition (monotone function):
Let A, B be two sets with a total ordering relation,
and let f: A— B be a mapping.
f is called monotone iff

Vaj,aa € A: a1 < ay = f(a1) < f(an)

" Lemma:
Let f: A— B be monotone. Then, f and min commute, i.e.

Vai,a, € A: f(min(ag, a2)) = min(f(ay), f(a2))
Analogously for the max.

" Proof:

Case1: a1 < ap, = f(al) < f(32
min(ay, a) = a;, min(f
f(min(ay, ax)) = f(a1) = min(f(a1), f(a2))

Case 2: ap < a; — analog

G. Zachmann Massively Parallel Algorithms SS June 2014 Sorting

eeeeee

= Extension of f: A— B to sequences over A and B, resp.:

f(ag,...,an) ="f(ag),...,f(an)

= Lemma:
Let f be a monotone mapping and A a comparator network.
Then /N and f commute, i.e.

VnVa,...,a,: N(f(a)) =f(N(a))

G. Zachmann Massively Parallel Algorithms SS June 2014 Sorting

eeeeee

= Proof:
* Let a=(ap,...,an) beasequence
= Notation: we write a comparator a0
connecting wire i and j like so: i T
i J)(a) ,- l
an

= Now the following is true:

G. Zachmann Massively Parallel Algorithms SS June 2014 Sorting

= Theorem (the O-1 principle):

Let N be a comparator network.
Now, if N sorts every sequence of 0's and 1's, then it also sorts

every sequence of arbitrary elements!

SS June 2014

G. Zachmann Massively Parallel Algorithms

..

-,
<n
E-X3)

Sorting

b

10

eeeeee

= Proof (by contradiction):
= Assumption: /N sorts all 0-1 sequences, but does not sort sequence a

* Then N(a) = b is not sorted correctly, i.e. Ik : by > b1
= Define f:A—{0,1} as follows:
0, c<b
f(c) = k
1, c > bk
= Now, the following holds:

F(b) = (N () 5 N (£(2)) = A(&)

f monotone

where a' is a 0-1 sequence.
= But: 1 (b) is not sorted, because f (b,) =1 and f (bx,7) =0

= Therefore, N/(a') is not sorted as well, in other words, we have
constructed a 0-1 sequence that is not sorted correctly by N .

G. Zachmann Massively Parallel Algorithms SS June 2014 Sorting

11

Y

Batcher's Odd-Even-Mergesort [1968]

<N

" |n the following, we'll always assume that the length n of a

sequence do,...,d,.1 is a power of 2, i.e., n= 2k

= First of all, we define the sub-routine "odd-even merge":

G. Zachmann

oem(a,,..,a,):

precondition: a0 /--r8p, -1 and a ,an-1 are both sorted

a7
postcondition: ag,..,apn-1 1s sortgd
if n = 2:

compare [ap:aj] (1)
if n > 2:

a —ag,az,..,an-2 // = even sub-sequence

a —aj,az,..,an-1 // = odd sub-sequence

~

b~ ocem(&) (2)
copy b —» ap,az2,..,an-2
copy b — aj,as,..,anp-1
for i €{1,3,5,..,n-3} (3)

compare [a; : aj+1]

Massively Parallel Algorithms SS June 2014 Sorting 12

b

eeeee

" VR ¥

-
= Proof of correctness: Z ; b
= By induction and the 0-1-principle 2x.oem o] (s sorted
= Base case: n =2 T e |7
= Induction step: n=2k, k> 1 | 180 191 nd hof
= Consider a 0-1-sequence ag,...,a,.1 ' d | (s sorted
= Write it in two columns vy] (e B
= Visualize O = white, 1 = grey J A 1.
= Obviously: both a and a consist of ‘_ L sequence
two sorted halves — preconditon of - ﬁ;’;’; eS:fe
oem is met 7777 3 35
= After line (2) we have this >
situation (the odd sub-sequence can
have at most two 1's more than the ()
b b

even sub-sequence)

G. Zachmann Massively Parallel Algorithms SS June 2014 Sorting 13

eeeeee

3 '
¥ cc =

VR X

* In loop (3), these comparisons /
are made, and there can be only / /L
3 cases: | 7 /ﬁ //.

7 7,
| | K2

NN

= Afterwards, one of these two
situations has been established:

= Result: the output sequence is sorted

= Conclusion:

every 0-1-sequence (meeting the preconditions) is sorted correctly

= Running time (sequ.) : T(n) = 2T(g) + g —1¢€ O(nlogn)

G. Zachmann Massively Parallel Algorithms SS June 2014 Sorting 14

E-X3)

7
«
b

<N

= The complete general sorting-algorithm:

oemSort (ag,..,an-1) :
if n=1:
return
ao,...,an/z_l — oemSort (ao,...,an/z_l)

an/2 yoey@p-1 < oemSort(an/2 yoer@pn-1)

oem(ag,..,an-1)

= Running time (sequ.): T(n) € O(nlog2 n)

SS June 2014 Sorting 15

G. Zachmann Massively Parallel Algorithms

eeeee Optional
Y Mapping the Recursion on a Massively-Parallel Architecture ob:

= Load data onto the GPU (global memory)

= The CPU executes the following controlling program:

oemSort (n) :
1l - return
oemSort(n/2)

oem(n, 1)

if n

oem(n, stride):
if n = 2:
launch oemBaseCaseKernel (stride)
// launches n parallel threads
else:
oem(n/2, stridex*x2)

launch oemRecursionKernel (stride)

= With the stride parameter, we can achieve sorting "in situ"

G. Zachmann Massively Parallel Algorithms SS June 2014 Sorting 16

b

Gabriel Zachmann
Optional

eeeee

Optional

= The kernel for line (3) of the original function oem():

oemRecursionKernel (stride):
if tid <stride || tid 2 n-stride:
output SortData[tid]
else:
a i — SortData[tid]
a j « SortData[tid+stride]
if tid/stride is even:
output max(a i, a j)
else:

output min(a i, a j)

= As usual, tid =thread ID =0, ..., n-1

G. Zachmann Massively Parallel Algorithms SS June 2014

Sorting

17

Gabriel Zachmann
Optional

eeeee Optional

= Kernel for line (1) of the function oem():

oemBaseCaseKernel (stride):

i = tid // tid = thread ID

if tid/stride is even: // are we on even/odd side?
J = 1 + stride

else:
J = 1 - stride

a0 — SortDhata[i] // SortData

al — SortDatal[j]

if on even side:
SortData[i]

else:
SortData[i]

global array

min (a0, al) // write output back

max (a0,al)

= Reminder: this kernel is executed in parallel for each index tid =0, ...,
n-1 in a stream

G. Zachmann Massively Parallel Algorithms SS June 2014 Sorting 18

Gabriel Zachmann
Optional

P
o Cece

7
L
0
S

<n

eeeee

= Depth complexity:
! log® n + ! lo

— n+ —logn
p 5 T8

= E.g., for 220 elements this are 210 passes

Sorting 19

SS June 2014

G. Zachmann Massively Parallel Algorithms

eeeeee

U Bitonic Sorting g

= Definition "bitonic sequence":
A sequence of numbers ay, ..., dn.1 is bitonic <
there is an index i such that
- aop, ..., 4; is monotonically increasing, and
- dj4+1, ---, An-1 IS monotonically decreasing;
OR

if there is a cyclic shift of this sequence such that this is the case.

= Because of the latter "OR", we understand all index arithmetic in
the following modulo n, and/or we assume in the following that
the sequence(s) have been cyclically shifted as described above

G. Zachmann Massively Parallel Algorithms SS June 2014 Sorting 20

eeeeee

= Examples of bitonic sequences:
0248109753 ;2481097530 ; 4810975302 ; ...

= 1012 14 209590 60 40 =
35231803589 o Il\\
=12345 . \
50 \\
] L B
= 00000111110000 ; . | A\
10 // \
1111100000111111 ; ; _———
1111100000’000011]]] 12 3 45 6 7 8 9 1011 12 13 14 15 16

" These sequences are NOT bitonic sequences:
=123123
=123012

G. Zachmann Massively Parallel Algorithms SS June 2014 Sorting 21

b

7
-
0
S

-]

g

(]

3

]

-

9.3

& ..
<n

= Because of the "modulo" index arithmetic, we can also visualize

them on a circle or cylinder:

= Clearly, n1 0 1
bitonic sequences do ay
have exactly
two inflection
points

dn/2
n/2 n/2-1

SS June 2014 Sorting 22

G. Zachmann Massively Parallel Algorithms

eeeee

Properties of Bitonic Sequences

= Any sub-sequence of a bitonic sequence is a bitonic sequence

= More precisely, assume qy, ..., dn1 is bitonic and we have indices

0<ii<ip<... <im<n

= Then, a;, a;,...,a;, isbitonic, too

= If ay, ..., n.1 is bitonic, then a,.q, ..., ag is bitonic, too

= (If we mirror a bitonic sequence "upside down", then the new
sequence is bitonic, too)

= A bitonic sequence has exactly one local(!) minimum and one
local maximum

G. Zachmann Massively Parallel Algorithms SS June 2014 Sorting

l.l
7. cG
VR

23

Y Some Notions and Definitions

= More precise graphical notation of a comparator:
min(a,b)

a

max(a,b)

= Definition rotation operator:
.,an-1) ,and j € [1,n-1].

Let a = (30, .
We define the rotation operator R;j acting on a as
Rja = (aj, dit1,.. -, aj+n_1)
June 2014

G. Zachmann Massively Parallel Algorithms SS

-,
<n
E-X3)

Sorting

7
-
R

24

>
*
T3
L LLLLL L

<n

eeeeee

= Definition L / U operator:
La = (min(ag, az), ..., min(as_1,a, 1))

Ua = (max(ag, az), ..., max(az 1,2, 1))

= Lemma:
The L/U operators are rotation invariant, i.e.

La = R_jLRja, and Ua = R_jURja.

(Remember that indices are always meant mod n)

" Proof :
= We need to show that R;Lla = LR;a

= This is trivially the case:
LR;a = (min(aj, aj+g), e min(ag_l, an-1), ..., min(a;_1, aj_1+§)) =

SS June 2014 Sorting 25

G. Zachmann Massively Parallel Algorithms

" VR ¥

= Definition half-cleaner:
A network that takes a as input and outputs (La, Ua)
is called a half-cleaner.

do @ ™
! > La
" The network that v ®
. dn/2-1 ¢ _/
realizes a half-cleaner: an2 I il 2
@
I 4 > Ua
dn-1 ®)
= Because of the rotation invariance, a
do

we can depict a half-cleaner on a
circle:

= |t always produces La and Ua,
. . a
no matter how a is rotated around the circle! Ao n/2
n/Z+

G. Zachmann Massively Parallel Algorithms SS June 2014 Sorting 26

" Theorem 1:

Given a bitonic input sequence a, the output of a half-cleaner has

the following properties:

1. La and Ua are bitonic, too;
2. max{La} < min{Ua}

G. Zachmann Massively Parallel Algorithms

SS

June 2014

Sorting

<n

E-X3)

27

b

eeeeee

Y

Proof

= The half-cleaner does the following:
1. Shift (only conceptually) the right half of a over to the left
2. Take the point-wise min/max — La , Ua

3. Shift Ua back to the right
= Because a is bitonic, there can be only one cross-over point
= By construction, both La and Ua must have length n/2

= Property 1 follows from the sub-sequence property

G. Zachmann Massively Parallel Algorithms SS L
a Ua

28

eeeeee

Y The Bitonic Merger

= The half-cleaner is the basic (and only) building block for the

bitonic sorting network!

= The recursive definition of a bitonic merger BM'(n) :

= [nput: bitonic BM(n)
sequence of ~ a0 e R
length n) R A
: L BM'(3
= Qutput: sorted : VV o ta (3)
sequence in = Y— 191
ascending order 2 4 vl -
® 3 2 2
T(n
= Analogously, : ~va | BM(3)
: ®
we can define _an-1 ®
! /
BM~(n) \ - ,

One half-cleaner stage

G. Zachmann Massively Parallel Algorithms SS June 2014

Sorting

sorted

l.l
7 ce
VR

29

eeeeee

o

Visualization of the Workings of a Bitonic Merger

———h—— I
. \) Y | R I
I- 1 7 1. > 1

<1

4 // - \> IT > 1
[] — 7 1 1
) <\ - /7 1 > 1

————

G. Zachmann Massively Parallel Algorithms SS June 2014

ortin

30

eeeeee

Mapping to Massively Parallel Architecture

= We have n = 2K many "lanes" = threads

= At each step, each thread needs to figure out its partner for compare/
exchange

= This can be done by considering the ID of each process (in binary):
= Atstepj,j=1, ..., k: partner ID = ID obtained by reversing bit (k-j) of own ID

= Example:
000 001 010 011 100 101 110 111

| AN A AN

k-2

k-1

G. Zachmann Massively Parallel Algorithms SS June 2014 Sorting 31

eeeeee

W The Bitonic Sorter 4

<n
E-X3)

= The recursive definition of a bitonic sorter BS'(n) :

BS'(n)
— ™
do
BS'(n/2) l
°
] dn/2-1 B o
£ ' b
S < % SM) :
- dn/2 e)
>
BS*(n/2) T \’
dn-1
" =

G. Zachmann Massively Parallel Algorithms SS June 2014 Sorting 36

b

