
Massively Parallel Algorithms
Parallel Sorting

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 2 Sorting Massively Parallel Algorithms 26 June 2014 SS

Sorting using Spaghetti in O(1) (?)

!  Is O(n) really the lower bound for sorting?

!  Consider the following thought experiment:

B.  For each number x in the list, cut a spaghetto to
length x � list = bundle of spaghetti & unary repr.

C. Hold the spaghetti loosely in your hand and
tap them on the kitchen table � takes O(1) !

D. Lower your other hand from above until it meets with a spaghetto —
this one is clearly the longest

E.  Remove this spaghetto and insert it into the front of the output list

F.  Repeat

!  If we could use this
mechanical computer,
then sorting would be O(1)

G. Zachmann 3 Sorting Massively Parallel Algorithms 26 June 2014 SS

Difficulties With Parallel Implementation of Standard Sequential Algorithms

!  Insertion sort:

!  Considers only one element at a time

!  Quicksort:

!  Yes, some parallelism at lower levels of the recursion tree

!  But, would need median as a pivot element ⟶ hard to find

! Otherwise, random pivot element causes varying sub-array sizes

!  Heapsort:

! Only one element at a time

!  Heap (= recursive data structure) is difficult on mass.-parallel architecture

!  Radix sort:

!  Yes, we've seen that already, works well

!  But, can handle only fixed-length numbers

G. Zachmann 4 Sorting Massively Parallel Algorithms 26 June 2014 SS

Assumptions

!  In this chapter, we will always assume that n = 2k

!  Elements can have any type, for which there is a comparison
operator

G. Zachmann 5 Sorting Massively Parallel Algorithms 26 June 2014 SS

Sorting Networks

!  Informal definition of comparator networks:

!  Consist of a bundle of "wires"

!  Each wire i carries a data element Di (e.g., float) from left to right

!  Two wires can be connected vertically by a comparator

!  If Di > Dj �� i < j (i.e., wrong order),
then Di and Dj are swapped by the
comparator before they move on
along the wires

!  Observation: every comparator network is data independent, i.e.,
the arrangement of comparators and the running time are always

the same!

!  Goal: find a "small" comparator network that performs sorting
for any input � sorting network

0
1
2
3

G. Zachmann 6 Sorting Massively Parallel Algorithms 26 June 2014 SS

Example

0

1

2

3

4

5

6

7

One stage / step

G. Zachmann 7 Sorting Massively Parallel Algorithms 26 June 2014 SS

The 0-1 Principle

!  Definition (monotone function):
Let A, B be two sets with a total ordering relation,
and let f : A � B be a mapping.
f is called monotone iff

!  Lemma:
Let f : A � B be monotone. Then, f and min commute, i.e.

Analogously for the max.

!  Proof:
Case 1:

Case 2:

⇥a1, a2 � A : f (min(a1, a2)) = min(f (a1), f (a2))

a1 � a2 ⇥ f (a1) � f (a2)

f (min(a1, a2)) = f (a1) = min(f (a1), f (a2))
min(a1, a2) = a1 , min(f (a1), f (a2)) = f (a1)

8a1, a2 2 A : a1  a2) f (a1)  f (a2)

G. Zachmann 8 Sorting Massively Parallel Algorithms 26 June 2014 SS

!  Extension of f : A � B to sequences over A and B, resp.:

!  Lemma:
Let f be a monotone mapping and a comparator network.
Then and f commute, i.e.

�n �a0, . . . , an : N
�
f (a)

⇥
= f

�
N (a)

⇥

G. Zachmann 9 Sorting Massively Parallel Algorithms 26 June 2014 SS

!  Proof:

!  Let be a sequence

!  Notation: we write a comparator
connecting wire i and j like so:

!  Now the following is true:

a0

i

j

an

[i : j]
�
f (a)

�
= [i : j]

�
f (a0), . . . , f (an)

�

=

�
f (a0), . . . , min(f (ai), f (aj))| {z }

i

, . . . , max(f (ai), f (aj))| {z }
j

, . . . , f (an)
�

=

�
f (a0), . . . , f (min(ai , aj)), . . . , f (max(ai , aj)), . . . , f (an)

�

= f
�
a0, . . . , min(ai , aj), . . . , max(ai , aj), . . . , an

�

= f
�
[i : j](a)

�

G. Zachmann 10 Sorting Massively Parallel Algorithms 26 June 2014 SS

!  Theorem (the 0-1 principle):
Let be a comparator network.
Now, if sorts every sequence of 0's and 1's, then it also sorts
every sequence of arbitrary elements!

G. Zachmann 11 Sorting Massively Parallel Algorithms 26 June 2014 SS

!  Proof (by contradiction):

!  Assumption: sorts all 0-1 sequences, but does not sort sequence a

!  Then is not sorted correctly, i.e.

!  Define f : A � {0,1} as follows:

!  Now, the following holds:

where a' is a 0-1 sequence.

!  But: f (b) is not sorted, because f (bk) = 1 and f (bk+1) = 0

!  Therefore, is not sorted as well, in other words, we have
constructed a 0-1 sequence that is not sorted correctly by .

f monotone

G. Zachmann 12 Sorting Massively Parallel Algorithms 26 June 2014 SS

Batcher's Odd-Even-Mergesort [1968]

!  In the following, we'll always assume that the length n of a
sequence a0,…,an-1 is a power of 2, i.e., n = 2k

!  First of all, we define the sub-routine "odd-even merge":

oem(a0,…,an-1):
precondition: a0,…,an/2 -1 and an/2 ,…,an-1 are both sorted
postcondition: a0,…,an-1 is sorted
if n = 2:
 compare [a0:a1] (1)
if n > 2:
 ā ← a0,a2,…,an-2 // = even sub-sequence
 â ← a1,a3,…,an-1 // = odd sub-sequence
 ← oem(ā)
 ← oem(â) (2)
 copy → a0,a2,…,an-2
 copy → a1,a3,…,an-1
 for i {1,3,5,…,n-3} (3)
 compare [ai : ai+1]

G. Zachmann 13 Sorting Massively Parallel Algorithms 26 June 2014 SS

!  Proof of correctness:

!  By induction and the 0-1-principle

!  Base case: n = 2

!  Induction step: n = 2k , k > 1

!  Consider a 0-1-sequence a0,…,an-1

! Write it in two columns

!  Visualize 0 = white, 1 = grey

! Obviously: both � and â consist of
two sorted halves � preconditon of
oem is met

!  After line (2) we have this
situation (the odd sub-sequence can
have at most two 1's more than the
even sub-sequence)

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

1st half
is sorted

2nd half
is sorted

odd sub-
sequence

even sub-
sequence

2x oem

G. Zachmann 14 Sorting Massively Parallel Algorithms 26 June 2014 SS

!  In loop (3), these comparisons
are made, and there can be only
3 cases:

!  Afterwards, one of these two
situations has been established:

!  Result: the output sequence is sorted

!  Conclusion:
every 0-1-sequence (meeting the preconditions) is sorted correctly

!  Running time (sequ.) :

G. Zachmann 15 Sorting Massively Parallel Algorithms 26 June 2014 SS

!  The complete general sorting-algorithm:

!  Running time (sequ.):

oemSort(a0,…,an-1):

if n = 1:

 return

a0,…,an/2 -1 ← oemSort(a0,…,an/2 -1)
an/2 ,…,an-1 ← oemSort(an/2 ,…,an-1)
oem(a0,…,an-1)

G. Zachmann 16 Sorting Massively Parallel Algorithms 26 June 2014 SS

Mapping the Recursion on a Massively-Parallel Architecture

!  Load data onto the GPU (global memory)

!  The CPU executes the following controlling program:

! With the stride parameter, we can achieve sorting "in situ"

oemSort(n):
if n = 1 → return
oemSort(n/2)
oem(n, 1)

oem(n, stride):
if n = 2:
 launch oemBaseCaseKernel(stride)
 // launches n parallel threads
else:
 oem(n/2, stride*2)
 launch oemRecursionKernel(stride)

Gabriel Zachmann
Optional

G. Zachmann 17 Sorting Massively Parallel Algorithms 26 June 2014 SS

!  The kernel for line (3) of the original function oem():

!  As usual, tid = thread ID = 0, …, n-1

oemRecursionKernel(stride):
if tid < stride || tid ≥ n-stride:
 output SortData[tid]
else:
 a_i ← SortData[tid]
 a_j ← SortData[tid+stride]
 if tid/stride is even:
 output max(a_i, a_j)
 else:
 output min(a_i, a_j)

Gabriel Zachmann
Optional

G. Zachmann 18 Sorting Massively Parallel Algorithms 26 June 2014 SS

!  Kernel for line (1) of the function oem():

!  Reminder: this kernel is executed in parallel for each index tid = 0, …,
n-1 in a stream

oemBaseCaseKernel (stride):
i = tid // tid = thread ID
if tid/stride is even: // are we on even/odd side?
 j = i + stride
else:
 j = i - stride
a0 ← SortData[i] // SortData = global array
a1 ← SortData[j]
if on even side:
 SortData[i] = min(a0,a1) // write output back
else:
 SortData[i] = max(a0,a1)

Gabriel Zachmann
Optional

G. Zachmann 19 Sorting Massively Parallel Algorithms 26 June 2014 SS

!  Depth complexity:

!  E.g., for 220 elements this are 210 passes

G. Zachmann 20 Sorting Massively Parallel Algorithms 26 June 2014 SS

Bitonic Sorting

!  Definition "bitonic sequence":
A sequence of numbers a0, …, an-1 is bitonic �
there is an index i such that
- a0, …, ai is monotonically increasing, and
- ai+1, …, an-1 is monotonically decreasing;
OR
if there is a cyclic shift of this sequence such that this is the case.

!  Because of the latter "OR", we understand all index arithmetic in
the following modulo n, and/or we assume in the following that
the sequence(s) have been cyclically shifted as described above

G. Zachmann 21 Sorting Massively Parallel Algorithms 26 June 2014 SS

!  Examples of bitonic sequences:

!  0 2 4 8 10 9 7 5 3 ; 2 4 8 10 9 7 5 3 0 ; 4 8 10 9 7 5 3 0 2 ; …

!  10 12 14 20 95 90 60 40
35 23 18 0 3 5 8 9

!  1 2 3 4 5

!  []

!  00000111110000 ;
1111100000111111 ;
1111100000 ; 000011111

!  These sequences are NOT bitonic sequences:

!  1 2 3 1 2 3

!  1 2 3 0 1 2

G. Zachmann 22 Sorting Massively Parallel Algorithms 26 June 2014 SS

!  Visual representation of bitonic sequences:

!  Because of the "modulo" index arithmetic, we can also visualize
them on a circle or cylinder:

!  Clearly,
bitonic sequences
have exactly
two inflection
points

index
0 n-1 0 n-1 0 n-1

0

n/2

n-1 1

n/2 - 1

a0

an/2

a1

G. Zachmann 23 Sorting Massively Parallel Algorithms 26 June 2014 SS

Properties of Bitonic Sequences

!  Any sub-sequence of a bitonic sequence is a bitonic sequence

! More precisely, assume a0, …, an-1 is bitonic and we have indices
0 ≤ i1 ≤ i2 ≤ … ≤ im < n

!  Then, is bitonic, too

!  If a0, …, an-1 is bitonic, then an-1 , …, a0 is bitonic, too

!  (If we mirror a bitonic sequence "upside down", then the new
sequence is bitonic, too)

!  A bitonic sequence has exactly one local(!) minimum and one
local maximum

ai0 , ai1 , . . . , aim

G. Zachmann 24 Sorting Massively Parallel Algorithms 26 June 2014 SS

Some Notions and Definitions

!  More precise graphical notation of a comparator:

!  Definition rotation operator:
Let , and j � [1,n-1] .
We define the rotation operator Rj acting on a as

a

b max(a,b)

min(a,b)

a = (a0, . . . , an�1)

Rja = (aj , aj+1, . . . , aj+n�1)

G. Zachmann 25 Sorting Massively Parallel Algorithms 26 June 2014 SS

!  Definition L / U operator:

!  Lemma:
The L/U operators are rotation invariant, i.e.

(Remember that indices are always meant mod n)

!  Proof :
! We need to show that

!  This is trivially the case:

La = (min(a0, a n
2
), . . . , min(a n

2�1, an�1))

Ua = (max(a0, a n
2
), . . . , max(a n

2�1, an�1))

La = R�jLRja, and Ua = R�jURja.

RjLa = LRja

LRja =
�
min(aj , aj+ n

2
), . . . , min(a n

2�1, an�1), . . . , min(aj�1, aj�1+ n
2
)
�
= . . .

G. Zachmann 26 Sorting Massively Parallel Algorithms 26 June 2014 SS

!  Definition half-cleaner:
A network that takes a as input and outputs (La , Ua)
is called a half-cleaner.

!  The network that
 realizes a half-cleaner:

!  Because of the rotation invariance,
we can depict a half-cleaner on a
circle:

!  It always produces La and Ua,
no matter how a is rotated around the circle!

a0

an-1

an/2
an/2-1

La

Ua

a0

an/2
an/2+1

a1

G. Zachmann 27 Sorting Massively Parallel Algorithms 26 June 2014 SS

!  Theorem 1:
Given a bitonic input sequence a, the output of a half-cleaner has
the following properties:

1.  La and Ua are bitonic, too;

2.  max{La}  min{Ua}

G. Zachmann 28 Sorting Massively Parallel Algorithms 26 June 2014 SS

Proof

!  The half-cleaner does the following:

1.  Shift (only conceptually) the right half of a over to the left

2.  Take the point-wise min/max ⟶ La , Ua

3.  Shift Ua back to the right

!  Because a is bitonic, there can be only one cross-over point

!  By construction, both La and Ua must have length n/2

!  Property 1 follows from the sub-sequence property

0 n-1 n/2

La Ua

0 n-1 n/2

G. Zachmann 29 Sorting Massively Parallel Algorithms 26 June 2014 SS

The Bitonic Merger

!  The half-cleaner is the basic (and only) building block for the
bitonic sorting network!

!  The recursive definition of a bitonic merger :

!  Input: bitonic
sequence of
length n

! Output: sorted
sequence in
ascending order

!  Analogously,
we can define

a0

an-1

bi
to

ni
c

La

Ua

so
rt

ed

One half-cleaner stage

BM"(n)

BM#(n)

BM"(n2)

BM"(n2)

BM"(n)

G. Zachmann 30 Sorting Massively Parallel Algorithms 26 June 2014 SS

Visualization of the Workings of a Bitonic Merger

G. Zachmann 31 Sorting Massively Parallel Algorithms 26 June 2014 SS

Mapping to Massively Parallel Architecture

!  We have n = 2k many "lanes" = threads

!  At each step, each thread needs to figure out its partner for compare/
exchange

!  This can be done by considering the ID of each process (in binary):

!  At step j, j = 1, …, k : partner ID = ID obtained by reversing bit (k-j) of own ID

!  Example:
 000 001 010 011 100 101 110 111
 | ^ ^ ^

k-3		

k-2		

 k-1

G. Zachmann 36 Sorting Massively Parallel Algorithms 26 June 2014 SS

The Bitonic Sorter

!  The recursive definition of a bitonic sorter : BS"(n)

BS"(n)

a0

an-1

un
so

rt
ed

so
rt

ed

an/2

an/2-1

bi
to

ni
c

BM"(n)

BS#(n/2)

BS"(n/2)

