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Sorting using Spaghetti in O(1) (?) 

!  Is O(n) really the lower bound for sorting? 

!  Consider the following thought experiment: 

B.  For each number x in the list, cut a spaghetto to  
length x �  list = bundle of spaghetti & unary repr. 

C. Hold the spaghetti loosely in your hand and  
tap them on the kitchen table � takes O(1) ! 

D. Lower your other hand from above until it meets with a spaghetto — 
this one is clearly the longest 

E.  Remove this spaghetto and insert it into the front of the output list 

F.  Repeat 

!  If we could use this  
mechanical computer,  
then sorting would be O(1) 
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Difficulties With Parallel Implementation of Standard Sequential Algorithms 

!  Insertion sort: 

!  Considers only one element at a time 

!  Quicksort: 

!  Yes, some parallelism at lower levels of the recursion tree 

!  But, would need median as a pivot element ⟶ hard to find 

! Otherwise, random pivot element causes varying sub-array sizes 

!  Heapsort: 

! Only one element at a time 

!  Heap (= recursive data structure) is difficult on mass.-parallel architecture 

!  Radix sort: 

!  Yes, we've seen that already, works well 

!  But, can handle only fixed-length numbers 
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Assumptions 

!  In this chapter, we will always assume that n = 2k 

!  Elements can have any type, for which there is a comparison 
operator 
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Sorting Networks 

!  Informal definition of comparator networks: 

!  Consist of a bundle of "wires" 

!  Each wire i carries a data element Di  (e.g., float) from left to right 

!  Two wires can be connected vertically by a comparator 

!  If  Di  > Dj  �� i < j   (i.e., wrong order), 
then Di and Dj  are swapped by the                                              
comparator before they move on  
along the wires 

!  Observation: every comparator network is data independent,  i.e., 
the arrangement of comparators and the running time are always 

the same!  

!  Goal: find a "small" comparator network that performs sorting 
for any input � sorting network 
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Example 
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The 0-1 Principle 

!  Definition (monotone function):  
Let A, B be two sets with a total ordering relation,  
and let  f : A � B be a mapping. 
f  is called monotone iff 

!  Lemma: 
Let  f : A � B  be monotone. Then, f and min commute, i.e. 

 
Analogously for the max. 

!  Proof: 
Case 1: 
 
 
Case 2:  

⇥a1, a2 � A : f ( min(a1, a2) ) = min( f (a1), f (a2) )

a1 � a2 ⇥ f (a1) � f (a2)

f ( min(a1, a2) ) = f (a1) = min( f (a1), f (a2) )
min(a1, a2) = a1 , min( f (a1), f (a2) ) = f (a1)

8a1, a2 2 A : a1  a2 ) f (a1)  f (a2)
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!  Extension of  f : A � B  to sequences over A and B, resp.: 

!  Lemma: 
Let f  be a monotone mapping  and        a comparator network. 
Then       and  f  commute, i.e. 

�n �a0, . . . , an : N
�
f (a)

⇥
= f

�
N (a)

⇥
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!  Proof: 

!  Let                    be a sequence 

!  Notation: we write a comparator 
connecting wire i  and  j  like so: 

!  Now the following is true: 

a0 
 

i 
 
j 

an 

[i : j ]
�
f (a)

�
= [i : j ]

�
f (a0), . . . , f (an)

�

=

�
f (a0), . . . , min( f (ai), f (aj) )| {z }

i

, . . . , max( f (ai), f (aj) )| {z }
j

, . . . , f (an)
�

=

�
f (a0), . . . , f ( min(ai , aj) ), . . . , f ( max(ai , aj) ), . . . , f (an)

�

= f
�
a0, . . . , min(ai , aj), . . . , max(ai , aj), . . . , an

�

= f
�
[i : j ](a)

�
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!  Theorem (the 0-1 principle): 
Let       be a comparator network. 
Now, if       sorts every sequence of  0's and  1's, then it also sorts 
every sequence of arbitrary elements! 
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!  Proof (by contradiction): 

!  Assumption:       sorts all 0-1 sequences, but does not sort sequence a  

!  Then                      is not sorted correctly, i.e.   

!  Define  f : A � {0,1}  as follows: 

!  Now, the following holds: 

 
 

where a'  is a 0-1 sequence. 

!  But: f (b) is not sorted, because f (bk) = 1 and f (bk+1) = 0 

!  Therefore,              is not sorted as well, in other words, we have 
constructed a  0-1 sequence that is not sorted correctly by       . 

f monotone 
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Batcher's Odd-Even-Mergesort                  [1968] 

!  In the following, we'll always assume that the length  n  of a 
sequence  a0,…,an-1 is a power of 2, i.e.,  n = 2k 

!  First of all, we define the sub-routine "odd-even merge": 

oem( a0,…,an-1 ): 
precondition:  a0,…,an/2 -1  and  an/2 ,…,an-1  are both sorted 
postcondition: a0,…,an-1  is sorted 
if  n = 2: 
    compare [a0:a1]                                     (1) 
if  n > 2: 
    ā ← a0,a2,…,an-2         // = even sub-sequence 
    â ← a1,a3,…,an-1         // = odd sub-sequence 
      ← oem( ā ) 
      ← oem( â )                                         (2) 
    copy   → a0,a2,…,an-2  
    copy   → a1,a3,…,an-1  
    for i  {1,3,5,…,n-3}                                 (3) 
        compare [ai : ai+1] 
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!  Proof of correctness: 

!  By induction and the 0-1-principle 

!  Base case: n = 2 

!  Induction step:  n = 2k , k > 1 

!  Consider a 0-1-sequence  a0,…,an-1 

! Write it in two columns 

!  Visualize 0 = white, 1 = grey 

! Obviously: both � and â consist of 
two sorted halves �  preconditon of 
oem is met 

!  After line (2) we have this 
situation (the odd sub-sequence can 
have at most two 1's more than the 
even sub-sequence)  

0 1 

2 3 

4 5 

6 7 

8 9 

10 11 

12 13 

14 15 

1st half 
is sorted 

2nd half 
is sorted 

odd sub- 
sequence 

even sub- 
sequence 

2x oem 
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!  In loop (3), these comparisons  
are made, and there can be only 
3 cases: 

!  Afterwards, one of these two 
situations has been established:  

!  Result: the output sequence is sorted 

!  Conclusion:  
every 0-1-sequence  (meeting the preconditions) is sorted correctly 

!  Running time (sequ.) : 
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!  The complete general sorting-algorithm: 

 

 

!  Running time (sequ.): 

oemSort(a0,…,an-1): 

if n = 1: 

  return 

a0,…,an/2 -1  ← oemSort(a0,…,an/2 -1) 
an/2 ,…,an-1  ← oemSort(an/2 ,…,an-1) 
oem(a0,…,an-1) 
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Mapping the Recursion on a Massively-Parallel Architecture 

!  Load data onto the GPU (global memory) 

!  The CPU executes the following controlling program: 

! With the stride parameter, we can achieve sorting "in situ" 

oemSort(n): 
if n = 1 → return 
oemSort( n/2 ) 
oem( n, 1 ) 

oem( n, stride ): 
if n = 2: 
    launch oemBaseCaseKernel(stride) 
   // launches n parallel threads 
else: 
    oem( n/2, stride*2 ) 
    launch oemRecursionKernel(stride) 

Gabriel Zachmann
Optional
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!  The kernel for line (3) of the original function oem(): 

!  As usual, tid = thread ID = 0, …, n-1  

oemRecursionKernel( stride ): 
if tid < stride || tid ≥ n-stride: 
    output SortData[tid] 
else: 
    a_i ← SortData[tid] 
    a_j ← SortData[ tid+stride ] 
    if tid/stride is even: 
        output max( a_i, a_j ) 
    else: 
        output min( a_i, a_j ) 

Gabriel Zachmann
Optional
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!  Kernel for line (1) of the function oem(): 

!  Reminder: this kernel is executed in parallel for each index  tid = 0, …, 
n-1  in a stream 

oemBaseCaseKernel ( stride ): 
i = tid                        // tid = thread ID 
if tid/stride is even:         // are we on even/odd side? 
    j = i + stride 
else: 
    j = i - stride 
a0 ← SortData[i]               // SortData = global array 
a1 ← SortData[j] 
if on even side: 
    SortData[i] = min(a0,a1)   // write output back 
else: 
    SortData[i] = max(a0,a1) 

Gabriel Zachmann
Optional
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!  Depth complexity: 

!  E.g., for 220 elements this are 210 passes  
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Bitonic Sorting 

!  Definition "bitonic sequence": 
A sequence of numbers a0, …, an-1  is bitonic  � 
there is an index i such that 
-  a0, …, ai        is monotonically increasing, and 
-  ai+1, …, an-1  is monotonically decreasing; 
OR  
if there is a cyclic shift of this sequence such that this is the case. 

!  Because of the latter "OR", we understand all index arithmetic in 
the following modulo n,  and/or we assume in the following that 
the sequence(s) have been cyclically shifted as described above 
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!  Examples of bitonic sequences: 

!  0 2 4 8 10 9 7 5 3  ;  2 4 8 10 9 7 5 3 0  ;  4 8 10 9 7 5 3 0 2  ;  … 

!  10 12 14 20 95 90 60 40  
35 23 18 0 3 5 8 9 

!  1 2 3 4 5 

!  [ ] 

!  00000111110000 ;  
1111100000111111 ;  
1111100000 ; 000011111  

!  These sequences are NOT bitonic sequences: 

!  1 2 3 1 2 3 

!  1 2 3 0 1 2 
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!  Visual representation of bitonic sequences: 

 

!  Because of the "modulo" index arithmetic, we can also visualize 
them on a circle or cylinder: 

!  Clearly, 
bitonic sequences 
have exactly 
two inflection 
points 

index 
0 n-1 0 n-1 0 n-1 

0 

n/2 

n-1 1 

n/2 - 1 

a0 

an/2 

a1 
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Properties of Bitonic Sequences 

!  Any sub-sequence of a bitonic sequence is a bitonic sequence 

! More precisely, assume a0, …, an-1  is bitonic and we have indices 
0 ≤ i1 ≤ i2 ≤ …  ≤ im < n 

!  Then,                               is bitonic, too 

!  If a0, …, an-1 is bitonic, then  an-1 , …, a0   is bitonic, too 

!  (If we mirror a bitonic sequence "upside down", then the new 
sequence is bitonic, too) 

!  A bitonic sequence has exactly one local(!) minimum and one 
local maximum 

ai0 , ai1 , . . . , aim
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Some Notions and Definitions 

!  More precise graphical notation of a comparator: 

!  Definition rotation operator: 
Let                                 , and  j � [1,n-1] . 
We define the rotation operator Rj acting on a as 
 
 

a 

b max(a,b) 

min(a,b) 

a = (a0, . . . , an�1)

Rja = (aj , aj+1, . . . , aj+n�1)
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!  Definition L / U operator: 
 
 

!  Lemma: 
The L/U operators are rotation invariant, i.e. 
 
 
(Remember that indices are always meant mod n ) 

!  Proof : 
! We need to show that 

!  This is trivially the case: 

La = (min(a0, a n
2
), . . . , min(a n

2�1, an�1) )

Ua = (max(a0, a n
2
), . . . , max(a n

2�1, an�1) )

La = R�jLRja, and Ua = R�jURja.

RjLa = LRja

LRja =
�
min(aj , aj+ n

2
), . . . , min(a n

2�1, an�1), . . . , min(aj�1, aj�1+ n
2
)
�
= . . .
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!  Definition half-cleaner: 
A network that takes a as input and outputs ( La , Ua ) 
is called a half-cleaner. 

!  The network that 
 realizes a half-cleaner: 

 

!  Because of the rotation invariance, 
we can depict a half-cleaner on a 
circle: 

!  It always produces La and Ua, 
no matter how a is rotated around the circle! 

a0 

an-1 

an/2 
an/2-1 

La 

Ua 

a0 

an/2 
an/2+1 

a1 



G. Zachmann 27 Sorting Massively Parallel Algorithms 26 June 2014 SS 

!  Theorem 1: 
Given a bitonic input sequence a, the output of a half-cleaner has 
the following properties: 

1.  La and Ua are bitonic, too; 

2.    max{La}  min{Ua}
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Proof 

!  The half-cleaner does the following: 

1.  Shift (only conceptually) the right half of a over to the left  

2.  Take the point-wise min/max ⟶ La , Ua 

3.  Shift Ua back to the right 

!  Because a is bitonic, there can be only one cross-over point 

!  By construction, both La and Ua must have length n/2 

!  Property 1 follows from the sub-sequence property 

0 n-1 n/2 

La Ua 

0 n-1 n/2 
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The Bitonic Merger 

!  The half-cleaner is the basic (and only) building block for the 
bitonic sorting network! 

!  The recursive definition of a bitonic merger               : 

!  Input: bitonic  
sequence of  
length n 

! Output: sorted  
sequence in  
ascending order 

!  Analogously, 
we can define 
 

a0 

an-1 

bi
to

ni
c 

La

Ua

so
rt

ed
 

One half-cleaner stage 

BM"(n)

BM#(n)

BM"(n2)

BM"(n2)

BM"(n)
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Visualization of the Workings of a Bitonic Merger 



G. Zachmann 31 Sorting Massively Parallel Algorithms 26 June 2014 SS 

Mapping to Massively Parallel Architecture 

!  We have n = 2k many "lanes" = threads 

!  At each step, each thread needs to figure out its partner for compare/
exchange 

!  This can be done by considering the ID of each process (in binary): 

!  At step j, j = 1, …, k :  partner ID = ID obtained by reversing bit (k-j) of own ID 

!  Example: 
   000  001   010  011   100  101  110  111 
   |      ^    ^         ^ 
   |______|    |         | 
   | k-3       |         | 
   |___________|         | 
   |    k-2              |  
   |_____________________| 
              k-1 
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The Bitonic Sorter 

!  The recursive definition of a bitonic sorter               : BS"(n)

BS"(n)

a0 

an-1 

un
so

rt
ed

 

so
rt

ed
 

an/2 

an/2-1 

bi
to

ni
c 

BM"(n)

BS#(n/2)

BS"(n/2)


